
Materiały powtórzeniowe

Lekcja 9-10.

Pętle



Cel lekcji
Celem lekcji jest zapoznanie się z pojęciem pętli.

W programie komputerowym często zachodzi potrzeba wykonania wielu bardzo
podobnych do siebie działań. Przykładem takich operacji może być wyświetlenie kilku
kolejnych liczb, obliczenie wartości dowolnej liczby lub oczekiwanie na naciśnięcie
przez użytkownika konkretnego znaku na klawiaturze. Aby wypisać kolejne liczby
naturalne (np. z przedziału od 1 do 9) można skorzystać z 9 poleceń
Console.WriteLine(). Należy zauważyć jednak, że te polecenia będą się od siebie różnić
tylko jednym elementem – wartością wyświetlanej liczby. Gdyby zaś rozszerzyć zakres
wyświetlanych wartości np. do 1000, nie trzeba nikogo przekonywać, że pisanie w tym
celu 1000 niemal identycznych linii jest po prostu stratą czasu i energii (zarówno
programisty jak i komputera). Dlatego też w każdym języku programowania występują
pętle – konstrukcje, które korzystając ze stosunkowo prostego zapisu kodu umożliwiają
wielokrotne wykonanie określonego zbioru poleceń.

Pętla FOR
W pętli for występuje zmienna, która nazywana jest licznikiem pętli. Dzięki tej zmiennej
istnieje możliwość określania, ile razy ma się wykonać pętla (czyli liczbę przebiegów
pętli). Oprócz licznika pętli, duże znaczenie ma wyrażenie logiczne, które pozwala
zadecydować, czy pętla się wykona czy też nie oraz polecenia wykonywane w samej
pętli.

Składnia pętli FOR:

for (od kiedy; do kiedy; co ile)
{

// ciało pętli (powtarzane instrukcje)
}

gdzie:

- od kiedy, oznacza stan początkowy pętli, od czego zaczynamy
- do kiedy, określa warunek działania pętli, gdy przestaje być spełniony to pętla się

zatrzymuje
- co ile - co ma się dziać co iterację pętli

w skrócie: for(od linii startu; aż miniesz linię mety; zrób kolejny krok).



for (int i = 0; i < 10; i++)

{

Console.WriteLine(i);

}

Przykład z życia wzięty - Załóżmy, że biegacz startuje w biegu na 100 metrów. Linia
startu to punkt o wartości 0. Koniec biegu, to moment minięcia mety czyli, gdy
przebiegliśmy 100 metrów (do tego momentu musimy przebierać nogami). Pomiędzy
początkiem a końcem, ilość przebiegniętych metrów rośnie – załóżmy, że aktualizujemy
ją co jeden metr.

Algorytm w tym wypadku wygląda tak:

1. Stoję na zerowym metrze.

2. Sprawdzam, czy jestem już na mecie

3. Jeżeli nie, to przesuwam się do przodu o metr i wracam do punktu 2

4. Jeżeli tak, kończę pętlę

Przerabiając to na kod, dostaniemy coś takiego:

for (int i = 0; i <= 100; i++)
{

Console.WriteLine($"to już {i} metr")
}



Pętla WHILE

Przejdźmy do omówienia kolejnych pętli. Zapis pętli while jest prostszy od pętli for.

Składnia:

while (wyrażenie logiczne)
{
//ciało pętli (instrukcje)

}

Algorytm pętli while można przedstawić w następujący sposób:
● jeżeli wyrażenie logiczne ma wartość true, to wykonaj instrukcje zawarte w pętli.

Powtarzaj ten krok, dopóki jest spełnione wyrażenie logiczne,
● jeżeli wyrażenie logiczne zwraca wartość false – zakończ działanie pętli.

Przykład:

int i = 0;
while (i < 10)
{

Console.WriteLine("Cyfra " + i);
i++;

}

UWAGA! Choć pętle w programowaniu są potężnym narzędziem, które pozwala
nam wykonywać te same operacje wielokrotnie, to musimy być ostrożni, aby nie
stworzyć nieskończonej pętli, która nigdy się nie zakończy.

Nieskończona pętla to taka, która nigdy nie przestaje działać, ponieważ warunek
zakończenia pętli nigdy nie zostaje spełniony. Może to spowodować, że program
"zawiesi się", a komputer przestanie reagować na inne polecenia.

Pamiętaj: Tworzenie nieskończonej pętli może spowodować, że Twój program zapętli
się, co może zmusić Cię do jego ręcznego zatrzymania. Zawsze dokładnie przemyśl,
jak ma działać Twoja pętla i upewnij się, że istnieje warunek jej zakończenia!



Jak unikać nieskończonych pętli?

1. Zawsze sprawdzaj warunek pętli: Upewnij się, że warunek, który określa, kiedy
pętla powinna się zakończyć, jest poprawnie zdefiniowany.

2. Pamiętaj o aktualizacji licznika: Jeśli używasz pętli, która zależy od zmiennej (np.
for lub while), upewnij się, że zmienna ta zmienia się w każdej iteracji, aby mogła
spełnić warunek zakończenia.

3. Testuj swoje pętle: Zawsze sprawdzaj, czy pętla kończy się, jak zamierzałeś, aby
uniknąć nieskończonych iteracji.

Pętla DO….WHILE
Sposób działania pętli do..while jest bardzo podobny do działania pętli while. Tu także
występuje wyrażenie logiczne, od którego zależy, czy pętla będzie wykonana (dla
wartości true), czy też zostanie zakończona (dla wartości false). Różnica pomiędzy tymi
pętlami polega na tym, że w pętli while warunek logiczny sprawdzany jest przed
pierwszym wykonaniem pętli, a w do..while warunek logiczny testowany jest po
pierwszym wykonaniu pętli. W konsekwencji pętla do..while wykonana zostanie
przynajmniej jeden raz, w czasie gdy pętla while może nie zostać wykonana w
ogóle, gdyby od wyrażenie logiczne było nie spełnione.

Składnia pętli do – while:
do
{
// ciało pętli (instrukcje)
}
while (wyrażenie logiczne)

Przykład:
static void Main(string[] args)

{

string odpowiedz;

do

{

Console.WriteLine($"Czas: {DateTime.Now}",);

Console.WriteLine("Ponownie pokazać aktualny czas? (t/n)");



odpowiedz = Console.ReadLine();

} while (odpowiedz != "n");

}

Dodatkowa misja Programisty:
Zadanie 1
Używając dowolnej pętli napisz program wypisujący w konsoli 10 pierwszych
wielokrotności liczby 3.

Zadanie 2
Używając pętli while napisz program, który metodą naiwną (algorytmem Euklidesa)
będzie sprawdzać największy wspólny dzielnik (NWD) dwóch podanych przez
użytkownika liczb.

Podpowiedz: https://pl.wikipedia.org/wiki/Algorytm_Euklidesa

Przykładowe wyniki: NWD(84, 126) = 42, NWD(150, 120) = 30, NWD(70, 28) = 14

Zadanie 3
Napisz program, generujący losowe cd-keys (klucz do oprogramowania) o podanej
przez użytkownika liczbie znaków. Klucz ma się składać z bloków po 5 znaków
rozdzielonych znakiem -.

Podpowiedź: Losowanie możemy zaimplementować w następujący sposób:
Random maszynaLosujaca = new Random();
int cyfra = maszynaLosujaca.Next(0, 10);
klucz += cyfra.ToString();

https://pl.wikipedia.org/wiki/Algorytm_Euklidesa

