o\ 0

] e o

ekagioanct (e p
programouwania

Materialy powtoérzeniowe

Lekcja 9-10.
Petle

programowania

Cel lekcji

Celem lekcji jest zapoznanie sie z pojeciem petli.

W programie komputerowym czesto zachodzi potrzeba wykonania wielu bardzo
podobnych do siebie dziatah. Przyktadem takich operacji moze by¢ wyswietlenie kilku
kolejnych liczb, obliczenie wartosci dowolnej liczby lub oczekiwanie na nacisniecie
przez uzytkownika konkretnego znaku na klawiaturze. Aby wypisa¢ kolejne liczby
naturalne (np. z przedzialu od 1 do 9) mozna skorzystac z 9 polecen
Console.WriteLine(). Nalezy zauwazy¢ jednak, ze te polecenia bedg sie od siebie rézni¢
tylko jednym elementem — wartoscig wyswietlanej liczby. Gdyby za$ rozszerzy¢ zakres
wyswietlanych wartosci np. do 1000, nie trzeba nikogo przekonywacg, ze pisanie w tym
celu 1000 niemal identycznych linii jest po prostu stratg czasu i energii (zarowno
programisty jak i komputera). Dlatego tez w kazdym jezyku programowania wystepujg
petle — konstrukcje, ktére korzystajgc ze stosunkowo prostego zapisu kodu umozliwiajg
wielokrotne wykonanie okreslonego zbioru polecen.

Petla FOR

W petli for wystepuje zmienna, ktéra nazywana jest licznikiem petli. Dzieki tej zmiennej
istnieje mozliwos¢ okreslania, ile razy ma sie wykonac petla (czyli liczbe przebiegow
petli). Oprocz licznika petli, duze znaczenie ma wyrazenie logiczne, ktére pozwala
zadecydowac, czy petla sie wykona czy tez nie oraz polecenia wykonywane w same;j

petli.

Sktadnia petli FOR:

for (od kiedy; do kiedy; co ile)

- od kiedy, oznacza stan poczatkowy petli, od czego zaczynamy

- do kiedy, okre$la warunek dziatania petli, gdy przestaje by¢ spetniony to petla sie
zatrzymuje

- coile - co ma sie dziac co iteracje petli

w skrocie: for(od linii startu; az miniesz linie mety; zrob kolejny krok).

.

4
\B= K

'!/*3

'771 <

programowania

for (i 0; 1 < 10; i++)
{

Console.WritelLine(i);

Przyktad z zycia wziety - Zatézmy, Zze biegacz startuje w biegu na 100 metrow. Linia
startu to punkt o wartosci 0. Koniec biegu, to moment miniecia mety czyli, gdy
przebieglismy 100 metréw (do tego momentu musimy przebiera¢ nogami). Pomiedzy
poczgtkiem a koncem, ilos¢ przebiegnietych metréw rosnie — zatozmy, ze aktualizujemy
ja co jeden metr.

Algorytm w tym wypadku wyglgda tak:

1. Stoje na zerowym metrze.

2. Sprawdzam, czy jestem juz na mecie

3. Jezeli nie, to przesuwam sie do przodu o metr i wracam do punktu 2
4. Jezeli tak, koncze petle

Przerabiajgc to na kod, dostaniemy cos takiego:

for (i=9; i<=100; i++)
{

}

Console.WriteLine($"to juz {i} metr™)

5o
JI

",
o

programowania

Petla WHILE
Przejdzmy do omowienia kolejnych petli. Zapis petli while jest prostszy od petli for.

Sktadnia:

while (wyrazenie logiczne)

{

}

Algorytm petli while mozna przedstawi¢ w nastepujgcy sposéb:

e jezeli wyrazenie logiczne ma wartosc true, to wykonaj instrukcje zawarte w petli.
Powtarzaj ten krok, dopodki jest spetnione wyrazenie logiczne,

e jezeli wyrazenie logiczne zwraca wartosc¢ false — zakoncz dziatanie petli.

Przyktad:

i=0;
while (i < 10)
{

Console.WriteLine("Cyfra " + i);
i++;

UWAGA! Cho¢ petle w programowaniu sa poteznym narzedziem, ktére pozwala
nam wykonywac te same operacje wielokrotnie, to musimy by¢ ostrozni, aby nie
stworzy¢ nieskonczonej petli, ktora nigdy sie nie zakonczy.

Nieskonczona petla to taka, ktéra nigdy nie przestaje dziata¢, poniewaz warunek
zakonczenia petli nigdy nie zostaje spetniony. Moze to spowodowac, ze program
"zawiesi sie", a komputer przestanie reagowac na inne polecenia.

Pamietaj: Tworzenie nieskonczonej petli moze spowodowac, ze Twdj program zapetli
sie, co moze zmusi¢ Cie do jego recznego zatrzymania. Zawsze doktadnie przemysil,
jak ma dziata¢ Twoja petla i upewnij sie, ze istnieje warunek jej zakonczenia!

.

p® g0 @
24 &
gL E

programowania

Jak unikaé nieskonczonych petli?

1. Zawsze sprawdzaj warunek petli: Upewnij sie, ze warunek, ktory okresla, kiedy
petla powinna sie zakonczy¢, jest poprawnie zdefiniowany.

2. Pamietaj o aktualizaciji licznika: Jesli uzywasz petli, ktéra zalezy od zmiennej (np.
for lub while), upewnij sie, ze zmienna ta zmienia sie w kazdej iteracji, aby mogta
spetni¢ warunek zakonczenia.

3. Testuj swoje petle: Zawsze sprawdzaj, czy petla konczy sie, jak zamierzates, aby
unikng¢ nieskonczonych iteraciji.

Petla DO....WHILE

Sposob dziatania petli do..while jest bardzo podobny do dziatania petli while. Tu takze
wystepuje wyrazenie logiczne, od ktérego zalezy, czy petla bedzie wykonana (dla
wartosci true), czy tez zostanie zakonczona (dla wartosci false). R6znica pomiedzy tymi
petlami polega na tym, ze w petli while warunek logiczny sprawdzany jest przed
pierwszym wykonaniem petli, a w do..while warunek logiczny testowany jest po
pierwszym wykonaniu petli. W konsekwencji petla do..while wykonana zostanie
przynajmniej jeden raz, w czasie gdy petla while moze nie zosta¢ wykonana w
ogole, gdyby od wyrazenie logiczne byto nie spetnione.

Skladnia petli do — while:

while (wyrazenie logiczne)

Przyktad:

Main([] args)

odpowiedz;

Console.WritelLine($"Czas: {DateTime.Now}",);

Console.WriteLine("Ponownie pokazaé aktualny czas? (t/n)");

“J‘,
CHE) | S

programowania

odpowiedz = Console.ReadLine();

} while (odpowiedz != "n");

Dodatkowa misja Programisty:

Zadanie 1
Uzywajgc dowolnej petli napisz program wypisujgcy w konsoli 10 pierwszych
wielokrotnosci liczby 3.

Zadanie 2

Uzywajgc petli while napisz program, ktéry metodg naiwng (algorytmem Euklidesa)
bedzie sprawdza¢ najwiekszy wspdélny dzielnik (NWD) dwoéch podanych przez
uzytkownika liczb.

Podpowiedz: https://pl.wikipedia.org/wiki/Algorytm_Euklidesa
Przyktadowe wyniki: NWD(84, 126) = 42, NWD(150, 120) = 30, NWD(70, 28) = 14

Zadanie 3
Napisz program, generujgcy losowe cd-keys (klucz do oprogramowania) o podanej

przez uzytkownika liczbie znakéw. Klucz ma sie sktada¢ z blokéw po 5 znakéw
rozdzielonych znakiem -.

Podpowiedz: Losowanie mozemy zaimplementowaé w nastepujgcy sposob:

Random maszynalLosujaca = Random();
cyfra = maszynalosujaca.Next(0, 10);

klucz += cyfra.ToString();

™,
=D

o
o
?lhiql

-
e

https://pl.wikipedia.org/wiki/Algorytm_Euklidesa

