S

|QaNCI
magm%wama @ m
Materialy powtoérzeniowe

Lekcja 12-13. Metody




programowania

Cel lekcji

Celem lekcji jest wprowadzenie do dzielenia kod na czesci i przedstawienie metod.

Metody to takie elementy kodu, ktére gromadzg jakgs funkcjonalno$é — przyjmujg
jakies wartosci (parametry), wykonujg na nich dowolne operacje, a nastepnie zwracajg
wynik.

Jezeli posiadamy fragment kodu, ktéry bedziemy uruchamia¢ wiecej niz jeden raz, nie
powinniSmy go po raz kolejny (nie powielamy kodu!). Kody powtarzajgce sie w wielu
miejscach nalezy przenosi¢ do tzw. metod, ktére ,wotajg”, tam gdzie sg im potrzebne.
Dlaczego? Np. gdy bedziemy wprowadzac¢ zmiany w jednej czesci, mozemy zapomnie¢
wprowadzi¢ je w drugiej, a tak mamy gwarancje, ze uruchamiamy zawsze doktadnie ten
sam kod. Pozwala to tez skrécic¢ liczbe linii kodu. Kazda metoda, powinna odpowiadac
najlepiej za jedng konkretng czynnos¢ i posiada¢c nazwe jednoznacznie na nig
wskazujgcg np. ObliczPotege(), WyswietlWynik(). Unikamy metod zbiorczych i nazw nie
pozwalajgcych na okreslenie za co dana metoda odpowiada.

Dobrym przyktadem sg poznane na wczesniejszych lekcjach metody klasy Math
wykonujgce dziatania matematyczne. Przyktadowo, dzieki metodzie Pow(x, y) mozemy
w naszym programie podnie$¢ dowolng liczbe x do dowolnej potegi y.

Math.Pow(x, y);

Dzieki niej, nie musimy za kazdym razem pisaC kodu, ktéry wykona te obliczenia.
Wystarczy, ze wywotamy juz gotowg metode, ktdra zwrdci nam prawidtowy wynik.
Dodatkowo do metody przekazujemy zmienne, ktdre sg potrzebne do wykonania w nigj
obliczen. W powyzszym przyktadzie, musimy podacC 2 liczby, na ktérych ma zostaé
wykonane dziatanie.



programowania

Podsumowujac - 3 gfdwne cechy metod:
1. Wykonuje konkretne zadanie np. dziatanie matematyczne.

2. Przyjmuje tzw. parametry, czyli zmienne potrzebne do wykonania zadania np. liczby
do dziatania (choc jesli jego wykonanie ich nie wymaga, nie musi niczego przyjmowac).

3. Zwraca wynik swojego dziatania w postaci odpowiedniej zmiennej np. wynik dziatania
(choc jesli nie jest potrzebny, nie musi niczego zwracac).

Cel metod - Do tej pory nasze programy skiadaty sie gtdownie z kilkunastu,
maksymalnie kilkudziesieciu linii kodu. W rozwinietych programach, potrafi ich byc¢
kilkaset tysiecy a nawet kilka milionow. Wydzielanie poszczegdinych fragmentéw kodu
do metod stuzy do jego usystematyzowania, zwieksza znaczgco jego czytelnosc i
ufatwia znajdowanie btedéw w systemie.

Ponadto wazng cechg jest wspomniana wczesniej mozliwos¢ wielokrotnego uzycia
metody w réznych miejscach programu. Dodatkowo, dzieki wydzielaniu kodu do metod,
w fatwy sposéb mozemy modyfikowaé dziatanie naszego programu poprzez zmiane
dziatania pojedynczej metody, bez koniecznosci modyfikowania duzej ilosci kodu.

Istniejg trzy gtéwne rodzaje metod:

1) metody nie przyjmujgce parametrow i nie zwracajgce wartosci
2) metody przyjmujgce parametry, ale niczego nie zwracajgce
3) metody przyjmujgce parametry i zwracajgce jaki$ wynik do programu

Definicja metod

Definicja metody skfada sie z kilku elementow (elementy ujete w nawiasy kwadratowe
sg opcjonalne). Pierwsza linia definicji, ktéra obejmuje modyfikatory, typ, nazwe i liste
argumentow stanowi deklaracje metody. Deklaracja metody wraz z ciatem metody —
stanowig definicje metody.

™,
=D

o
o
?Hliq

-
e



{,r;fi'N"'

programowania

Skladnia:
[Modyfikatory] Typ Nazwa ([Lista argumentoéw])

{
[Ciato metody]

- Modyfikatory - okreslajg zachowanie i dostepnos¢ metody,

- Typ — typ danej zwracanej przez metode,

- Nazwa — nazwa metody, ro6zna od nazwy klasy, w ktérej zostata zdefiniowana,

- Lista argumentéw — lista argumentow przekazywanych do metody,

- Ciato metody — inaczej tres¢ metody, kod (zbior instrukcji) realizujgcy dziatanie
metody.

Przyktady:
1) Metoda nie przyjmuje parametréw i nie zwracajgca wartosci:

static woid Main(string[] args)

1
WypiszImie();
}
private static void WypiszImie()
1
Conscle.WriteLline("Moje imie to Marek™};
}

2) Metoda przyjmujgca parametry, ale niczego nie zwracajgca:

l -

1
>y

DD



< giganc
programowania

static woid Main{string[] args)

{

¥
|

private static void DodajDwieliczby(int liczbal, int liczbal2)

{

DodajDwieliczby(5,18);

int wynik = liczbal + liczba2;
Conscle.Writeline("Wynik dodawania to {8}", wynik);
¥
3) Metoda przyjmujgca parametry i zwracajgca wynik dziatania do programu

static wvoid Main(string[] args)

{
H

float wynikDzialaniaMetody = OdejmijLiczby(>, 18);

private static fleat OdejmijLiczby(float liczbal, flocat liczba2)

1
¥

return liczba2 - liczhal;

Dodatkowa misja Programisty:

1. Napisz prosty kalkulator dostepny w konsoli, w ktérym:

Uzytkownik poda znak dziatania, ktére chce wykonac¢

Poda pierwszg liczbe

Poda drugg liczbe

Zostanie wywotfana odpowiednia metoda (kazde dziatanie ma wiasng)
e Na konsoli wyswietli sie wynik

Dostepne bedg podstawowe operacje matematyczne: +,-,*,/.




<PAgiganci
oragmgowania @ D¢

2. Stwoérz prosty program do wyszukiwania tytutow ksigzek w bazie biblioteki (lub
piosenek, filméw czy gier w serwisie internetowym). Do zasymulowania bazy danych
uzyj tablicy z tytutami. Program powinien:
e Przyjgc¢ od uzytkownika tytut,
e \Wywota¢ metode, ktéra sprawdzi, czy tytut jest dostepny w bazie i zwrdci info o
dostepnosci,
e W kazdej z mozliwosci, program wyswietli uzytkownikowi odpowiedni komunikat
o dostepnosci.
3. Rozbuduj wykonywany na lekcji projekt Kamien, papier, nozyce dodajgc:
e Metode wyswietlajgcg powitanie gracza
e Metode wyswietlajgcg podsumowanie gry
e Statystyki zwyciestw:przegranych w ramach jednej ses;ji
e Tryb drugiego gracza




