
Sposoby przechowywania danych

Celem lekcji jest powtórzenie wiadomości z ubiegłych dwóch części
programowania w C# oraz przedstawienie sposobów przechowywania

danych.

Powtórzenie wiadomości

● Klasa - szablon definiujący właściwości i zachowania obiektów. Klasa może zawierać pola,
właściwości, metody, zdarzenia i inne elementy.

● Obiekt - instancja klasy, która może mieć własne wartości dla właściwości zdefiniowanych w klasie.

● Metoda - blok kodu w klasie, który wykonuje określone operacje. Metody mogą przyjmować
parametry i zwracać wartości.

● Pętla - konstrukcja umożliwiająca wielokrotne wykonanie bloku kodu. W C# dostępne są różne typy
pętli, takie jak for, while i foreach.

● Lista - struktura danych, która przechowuje zbiór elementów w określonej kolejności.

● Programowanie obiektowe - paradygmat programowania oparty na koncepcji "obiektów", które
mogą zawierać dane i metody.

● Dziedziczenie - mechanizm, który pozwala jednej klasie (klasie pochodnej) przejmować
właściwości i metody innej klasy (klasy bazowej).

Rekord

● Rekordy w C# służą do przechowywania danych i są zoptymalizowane do
niemutowalnych obiektów.

● Raz utworzony obiekt nie można zmienić.

public record Osoba(string Imie, int Wiek);

Słownik

● Słownik (Dictionary) w C# to kolekcja przechowująca pary klucz-wartość.

● Klucz musi być unikalny i służy do identyfikacji wartości, która jest z nim powiązana.

Dictionary<int, string> giganci = new Dictionary<int, string>();

Kolejka

● Kolejka to struktura danych, które przechowuje elementy w kolejności FIFO (First In,
First Out).

● Elementy są dodawane na końcu kolejki i usuwane z jej początku.

Queue<string> kolejka1 = new Queue<string>();

HashSet

● HashSet to kolejka, która przechowuje unikalne elementy bez określonej kolejności.

HashSet<int> numery = new HashSet<int>();

Zbiory

∙ Suma zbiorów łączy dwa zbiory, zawierając wszystkie unikalne elementy.
∙ Różnica zbiorów zawiera elementy z jednego zbioru, które nie są obecne w drugim

zbiorze.
∙ Część wspólna zbiorów zawiera elementy obecne w obu zbiorach.

 // Suma zbiorów (Union)

 set1.UnionWith(set2);

 Console.WriteLine("Union: " + string.Join(", ", set1)); // 1, 2, 3, 4, 5, 6, 7, 8

 // Część wspólna zbiorów (Intersection)

 set1.IntersectWith(set2);

 Console.WriteLine("Intersection: " + string.Join(", ", set1)); // 4, 5

 // Różnica zbiorów (Difference)

 set1.ExceptWith(set2);

 Console.WriteLine("Difference: " + string.Join(", ", set1)); // 1, 2, 3

